Reader
Provides tools for importing and standardizing quantitative proteomics data.
This module offers software-specific reader classes to import raw result tables (e.g.,
proteins, peptides, ions) from various proteomics software (MaxQuant, FragPipe,
Spectronaut) and convert them into a standardized msreport format. Additionally, it
provides functions for annotating imported data with biological metadata, such as
protein information (e.g., sequence length, molecular weight) and peptide positions,
extracted from a ProteinDatabase (FASTA file).
New columns added to imported protein tables: - Representative protein - Leading proteins - Protein reported by software
Standardized column names for quantitative values (if available in the software output): - Spectral count "sample name" - Unique spectral count "sample name" - Total spectral count "sample name" - Intensity "sample name" - LFQ intensity "sample name" - iBAQ intensity "sample name"
Classes:
| Name | Description |
|---|---|
Protein |
Abstract protein entry |
ProteinDatabase |
Abstract protein database |
ResultReader |
Base Reader class, is by itself not functional. |
MaxQuantReader |
MaxQuant result reader. |
FragPipeReader |
FragPipe result reader. |
SpectronautReader |
Spectronaut result reader. |
Functions:
| Name | Description |
|---|---|
sort_leading_proteins |
Returns a copy of 'table' with sorted leading proteins. |
add_protein_annotation |
Uses a FASTA protein database to add protein annotation columns. |
add_protein_site_annotation |
Uses a FASTA protein database to add protein site annotation columns. |
add_leading_proteins_annotation |
Uses a FASTA protein database to add leading protein annotation columns. |
add_protein_site_identifiers |
Adds a "Protein site identifier" column to the 'table'. |
add_sequence_coverage |
Calculates "Sequence coverage" and adds a new column to the 'protein_table'. |
add_ibaq_intensities |
Adds iBAQ intensity columns to the 'table'. |
add_peptide_positions |
Adds peptide "Start position" and "End position" positions to the table. |
add_protein_modifications |
Adds a "Protein sites" column. |
propagate_representative_protein |
Propagates "Representative protein" column from the source to the target table. |
extract_sample_names |
Extracts sample names from columns containing the 'tag' substring. |
extract_maxquant_localization_probabilities |
Extract localization probabilites from a MaxQuant "Probabilities" entry. |
extract_fragpipe_localization_probabilities |
Extract localization probabilites from a FragPipe "Localization" entry. |
extract_spectronaut_localization_probabilities |
Extract localization probabilites from a Spectronaut localization entry. |
Protein
ProteinDatabase
ResultReader
ResultReader()
Base Reader class, is by itself not functional.
Source code in msreport\reader.py
67 68 69 | |
MaxQuantReader
Bases: ResultReader
MaxQuant result reader.
Methods:
| Name | Description |
|---|---|
import_proteins |
Reads a "proteinGroups.txt" file and returns a processed dataframe, conforming to the MsReport naming convention. |
import_peptides |
Reads a "peptides.txt" file and returns a processed dataframe, conforming to the MsReport naming convention. |
import_ion_evidence |
Reads an "evidence.xt" file and returns a processed dataframe, conforming to the MsReport naming convention. |
Attributes:
| Name | Type | Description |
|---|---|---|
default_filenames |
dict[str, str]
|
(class attribute) Look up of filenames for the result files generated by MaxQuant. |
sample_column_tags |
list[str]
|
(class attribute) Column tags for which an additional column is present per sample. |
column_mapping |
dict[str, str]
|
(class attribute) Used to rename original column names from MaxQuant according to the MsReport naming convention. |
column_tag_mapping |
OrderedDict[str, str]
|
(class attribute) Mapping of original sample column tags from MaxQuant to column tags according to the MsReport naming convention, used to replace column names containing the original column tag. |
protein_info_columns |
list[str]
|
(class attribute) List of columns that contain protein specific information. Used to allow removing all protein specific information prior to changing the representative protein. |
protein_info_tags |
list[str]
|
(class attribute) List of tags present in columns that contain protein specific information per sample. |
data_directory |
str
|
Location of the MaxQuant "txt" folder |
filenames |
list[str]
|
Look up of filenames generated by MaxQuant |
contamination_tag |
str
|
Substring present in protein IDs to identify them as potential contaminants. |
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
directory
|
str
|
Location of the MaxQuant "txt" folder. |
required |
isobar
|
bool
|
Set to True if quantification strategy was TMT, iTRAQ or similar. |
False
|
contaminant_tag
|
str
|
Prefix of Protein ID entries to identify contaminants. |
'CON__'
|
Source code in msreport\reader.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 | |
import_proteins
import_proteins(
filename: Optional[str] = None,
rename_columns: bool = True,
prefix_column_tags: bool = True,
drop_decoy: bool = True,
drop_idbysite: bool = True,
drop_protein_info: bool = False,
) -> DataFrame
Reads a "proteinGroups.txt" file and returns a processed dataframe.
Adds three new protein entry columns to comply with the MsReport convention: "Protein reported by software", "Leading proteins", "Representative protein".
"Protein reported by software" contains the first protein ID from the "Majority protein IDs" column. "Leading proteins" contain all entries from the "Majority protein IDs" column that have the same and highest number of mapped peptides in the "Peptide counts (all)" column, multiple protein entries are separated by ";". "Representative protein" contains the first entry form "Leading proteins".
Several columns in the "combined_protein.tsv" file contain information specific for the protein entry of the "Protein" column. If leading proteins will be re-sorted later, it is recommended to remove columns containing protein specific information by setting 'drop_protein_info=True'.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
allows specifying an alternative filename, otherwise the default filename is used. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
prefix_column_tags
|
bool
|
If True, column tags such as "Intensity" are added in front of the sample names, e.g. "Intensity sample_name". If False, column tags are added afterwards, e.g. "Sample_name Intensity"; default True. |
True
|
drop_decoy
|
bool
|
If True, decoy entries are removed and the "Reverse" column is dropped; default True. |
True
|
drop_idbysite
|
bool
|
If True, protein groups that were only identified by site are removed and the "Only identified by site" columns is dropped; default True. |
True
|
drop_protein_info
|
bool
|
If True, columns containing protein specific information, such as "Gene names", "Sequence coverage [%]" or "iBAQ peptides". See MaxQuantReader.protein_info_columns and MaxQuantReader.protein_info_tags for a full list of columns that will be removed. Default False. |
False
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed protein table. |
Source code in msreport\reader.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | |
import_peptides
import_peptides(
filename: Optional[str] = None,
rename_columns: bool = True,
prefix_column_tags: bool = True,
drop_decoy: bool = True,
) -> DataFrame
Reads a "peptides.txt" file and returns a processed dataframe.
Adds new columns to comply with the MsReport convention: "Protein reported by software" and "Representative protein", both contain the first entry from "Leading razor protein".
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
allows specifying an alternative filename, otherwise the default filename is used. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
prefix_column_tags
|
bool
|
If True, column tags such as "Intensity" are added in front of the sample names, e.g. "Intensity sample_name". If False, column tags are added afterwards, e.g. "Sample_name Intensity"; default True. |
True
|
drop_decoy
|
bool
|
If True, decoy entries are removed and the "Reverse" column is dropped; default True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed peptide table. |
Source code in msreport\reader.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | |
import_ion_evidence
import_ion_evidence(
filename: Optional[str] = None,
rename_columns: bool = True,
rewrite_modifications: bool = True,
drop_decoy: bool = True,
) -> DataFrame
Reads an "evidence.txt" file and returns a processed dataframe.
Adds new columns to comply with the MsReport convention. "Modified sequence", "Modifications columns", "Modification localization string". "Protein reported by software" and "Representative protein", both contain the first entry from "Leading razor protein". "Ion ID" contains unique entries for each ion, which are generated by concatenating the "Modified sequence" and "Charge" columns, and if present, the "Compensation voltage" column.
"Modified sequence" entries contain modifications within square brackets. "Modification" entries are strings in the form of "position:modification_tag", multiple modifications are joined by ";". An example for a modified sequence and a modification entry: "PEPT[Phospho]IDO[Oxidation]", "4:Phospho;7:Oxidation".
"Modification localization string" contains localization probabilities in the
format "Mod1@Site1:Probability1,Site2:Probability2;Mod2@Site3:Probability3",
e.g. "15.9949@11:1.000;79.9663@3:0.200,4:0.800". Refer to
msreport.peptidoform.make_localization_string for details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Allows specifying an alternative filename, otherwise the default filename is used. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
rewrite_modifications
|
bool
|
If True, the peptide format in "Modified sequence" is changed according to the MsReport convention, and a "Modifications" is added to contains the amino acid position for all modifications. Requires 'rename_columns' to be true. Default True. |
True
|
drop_decoy
|
bool
|
If True, decoy entries are removed and the "Reverse" column is dropped; default True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed ion table. |
Source code in msreport\reader.py
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 | |
FragPipeReader
FragPipeReader(
directory: str,
isobar: bool = False,
sil: bool = False,
contaminant_tag: str = "contam_",
)
Bases: ResultReader
FragPipe result reader.
Methods:
| Name | Description |
|---|---|
import_design |
Depending on the quantification strategy, imports either the manifest file or the experiment annotation file and returns a processed design dataframe. |
import_manifest |
Reads a "fragpipe-files.fp-manifest" file and returns a processed design dataframe. |
import_experiment_annotation |
Reads a "experiment_annotation" file and returns a processed design dataframe. |
import_proteins |
Reads a "combined_protein.tsv" or "protein.tsv" file and returns a processed dataframe, conforming to the MsReport naming convention. |
import_peptides |
Reads a "combined_peptide.tsv" or "peptide.tsv" file and returns a processed dataframe, conforming to the MsReport naming convention. |
import_ions |
Reads a "combined_ion.tsv" or "ion.tsv" file and returns a processed dataframe, conforming to the MsReport naming convention. |
import_ion_evidence |
Reads and concatenates all "ion.tsv" files and returns a processed dataframe, conforming to the MsReport naming convention. |
Attributes:
| Name | Type | Description |
|---|---|---|
default_filenames |
dict[str, str]
|
(class attribute) Look up of default filenames of the result files generated by FragPipe. |
isobar_filenames |
dict[str, str]
|
(class attribute) Look up of default filenames of the result files generated by FragPipe, which are relevant when using isobaric quantification. |
sample_column_tags |
list[str]
|
(class attribute) Tags (column name substrings) that idenfity sample columns. Sample columns are those, for which one unique column is present per sample, for example intensity columns. |
column_mapping |
dict[str, str]
|
(class attribute) Used to rename original column names from FragPipe according to the MsReport naming convention. |
column_tag_mapping |
OrderedDict[str, str]
|
(class attribute) Mapping of original sample column tags from FragPipe to column tags according to the MsReport naming convention, used to replace column names containing the original column tag. |
protein_info_columns |
list[str]
|
(class attribute) List of columns that contain information specific to the leading protein. |
protein_info_tags |
list[str]
|
(class attribute) List of substrings present in columns that contain information specific to the leading protein. |
data_directory |
str
|
Location of the folder containing FragPipe result files. |
filenames |
dict[str, str]
|
Look up of FragPipe result filenames used for importing protein or other tables. |
contamination_tag |
str
|
Substring present in protein IDs to identify them as potential contaminants. |
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
directory
|
str
|
Location of the FragPipe result folder |
required |
isobar
|
bool
|
Set to True if quantification strategy was TMT, iTRAQ or similar; default False. |
False
|
sil
|
bool
|
Set to True if the FragPipe result files are from a stable isotope labeling experiment, such as SILAC; default False. |
False
|
contaminant_tag
|
str
|
Prefix of Protein ID entries to identify contaminants; default "contam_". |
'contam_'
|
Source code in msreport\reader.py
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | |
import_design
import_design(sort: bool = False) -> DataFrame
Reads the experimental design file and returns a processed design dataframe.
Depending on the quantification strategy (isobaric or label-free/sil), either the experiment annotation file or the manifest file is imported.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sort
|
bool
|
If True, the design dataframe is sorted by "Experiment" and "Replicate"; default False. |
False
|
Source code in msreport\reader.py
684 685 686 687 688 689 690 691 692 693 694 695 696 697 | |
import_manifest
Read a 'fp-manifest' file and returns a processed design dataframe.
The manifest columns "Path", "Experiment", and "Bioreplicate" are mapped to the design table columns "Rawfile", "Experiment", and "Replicate". The "Rawfile" column is extracted as the filename from the full path. The "Sample" column is generated by combining "Experiment" and "Replicate" with an underscore (e.g., "Experiment_Replicate"), except when "Replicate" is empty, in which case "Sample" is set to "Experiment". If "Experiment" is missing, it is set to "exp" by default.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Allows specifying an alternative filename, otherwise the default filename is used. |
None
|
sort
|
bool
|
If True, the design dataframe is sorted by "Experiment" and "Replicate"; default False. |
False
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed design table with columns: |
DataFrame
|
"Sample", "Experiment", "Replicate", "Rawfile". |
Raises:
| Type | Description |
|---|---|
FileNotFoundError
|
If the specified manifest file does not exist. |
Source code in msreport\reader.py
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 | |
import_experiment_annotation
Read a 'experiment_annotation' file and returns a processed design dataframe.
The annotation columns "sample", "channel", and "plex" are mapped to the design table columns "Sample", "Channel", and "Plex". The "Experiment" and "Replicate" columns are extracted from the "Sample" column by splitting at the last underscore, if there is no underscore, "Replicate" is set to an empty string.
Note that this convention of splitting the "Sample" column does confirm to the FragPipe convention, but FragPipe does not enforce it for the experiment annotation file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Allows specifying an alternative filename, otherwise the default filename is used. |
None
|
sort
|
bool
|
If True, the design dataframe is sorted by "Experiment" and "Replicate"; default False. |
False
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed design table with columns: |
DataFrame
|
"Sample", "Experiment", "Replicate", "Channel", and "Plex". |
Raises:
| Type | Description |
|---|---|
FileNotFoundError
|
If the specified manifest file does not exist. |
Source code in msreport\reader.py
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 | |
import_proteins
import_proteins(
filename: Optional[str] = None,
rename_columns: bool = True,
prefix_column_tags: bool = True,
drop_protein_info: bool = False,
) -> DataFrame
Reads a "combined_protein.tsv" or "protein.tsv" file and returns a processed dataframe.
Adds four protein entry columns to comply with the MsReport convention: "Protein reported by software", "Leading proteins", "Representative protein", "Potential contaminant".
"Protein reported by software" contains the protein ID extracted from the "Protein" column. "Leading proteins" contains the combined protein IDs extracted from the "Protein" and "Indistinguishable Proteins" columns, multiple entries are separated by ";". "Representative protein" contains the first entry form "Leading proteins".
Several columns in the "combined_protein.tsv" file contain information specific for the protein entry of the "Protein" column. If leading proteins will be re-sorted later, it is recommended to remove columns containing protein specific information by setting 'drop_protein_info=True'..
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Allows specifying an alternative filename, otherwise the default filename is used. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
prefix_column_tags
|
bool
|
If True, column tags such as "Intensity" are added in front of the sample names, e.g. "Intensity sample_name". If False, column tags are added afterwards, e.g. "Sample_name Intensity"; default True. |
True
|
drop_protein_info
|
bool
|
If True, columns containing protein specific information, such as "Gene" or "Protein Length". See FragPipeReader.protein_info_columns and FragPipeReader.protein_info_tags for a full list of columns that will be removed. Default False. |
False
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed protein table. |
Source code in msreport\reader.py
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 | |
import_peptides
import_peptides(
filename: Optional[str] = None,
rename_columns: bool = True,
prefix_column_tags: bool = True,
) -> DataFrame
Reads a "combined_peptides.txt" file and returns a processed dataframe.
Adds a new column to comply with the MsReport convention: "Protein reported by software"
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
allows specifying an alternative filename, otherwise the default filename is used. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
prefix_column_tags
|
bool
|
If True, column tags such as "Intensity" are added in front of the sample names, e.g. "Intensity sample_name". If False, column tags are added afterwards, e.g. "Sample_name Intensity"; default True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed peptide table. |
Source code in msreport\reader.py
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 | |
import_ions
import_ions(
filename: Optional[str] = None,
rename_columns: bool = True,
rewrite_modifications: bool = True,
prefix_column_tags: bool = True,
) -> DataFrame
Reads a "combined_ion.tsv" or "ion.tsv" file and returns a processed dataframe.
Adds new columns to comply with the MsReport convention. "Modified sequence" and "Modifications columns". "Protein reported by software" and "Representative protein", both contain the first entry from "Leading razor protein". "Ion ID" contains unique entries for each ion, which are generated by concatenating the "Modified sequence" and "Charge" columns, and if present, the "Compensation voltage" column.
"Modified sequence" entries contain modifications within square brackets. "Modification" entries are strings in the form of "position:modification_text", multiple modifications are joined by ";". An example for a modified sequence and a modification entry: "PEPT[Phospho]IDO[Oxidation]", "4:Phospho;7:Oxidation".
Note that currently the format of the modification itself, as well as the site localization probability are not modified; and no protein site entries are added.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Allows specifying an alternative filename, otherwise the default filename is used. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
rewrite_modifications
|
bool
|
If True, the peptide format in "Modified sequence" is changed according to the MsReport convention, and a "Modifications" is added to contains the amino acid position for all modifications. Requires 'rename_columns' to be true. Default True. |
True
|
prefix_column_tags
|
bool
|
If True, column tags such as "Intensity" are added in front of the sample names, e.g. "Intensity sample_name". If False, column tags are added afterwards, e.g. "Sample_name Intensity"; default True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A DataFrame containing the processed ion table. |
Source code in msreport\reader.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 | |
import_ion_evidence
import_ion_evidence(
filename: Optional[str] = None,
rename_columns: bool = True,
rewrite_modifications: bool = True,
prefix_column_tags: bool = True,
) -> DataFrame
Reads and concatenates all "ion.tsv" files and returns a processed dataframe.
Adds new columns to comply with the MsReport convention. "Modified sequence", "Modifications", and "Modification localization string" columns. "Protein reported by software" and "Representative protein", both contain the first entry from "Leading razor protein". "Ion ID" contains unique entries for each ion, which are generated by concatenating the "Modified sequence" and "Charge" columns, and if present, the "Compensation voltage" column.
"Modified sequence" entries contain modifications within square brackets. "Modification" entries are strings in the form of "position:modification_text", multiple modifications are joined by ";". An example for a modified sequence and a modification entry: "PEPT[Phospho]IDO[Oxidation]", "4:Phospho;7:Oxidation".
"Modification localization string" contains localization probabilities in the
format "Mod1@Site1:Probability1,Site2:Probability2;Mod2@Site3:Probability3",
e.g. "15.9949@11:1.000;79.9663@3:0.200,4:0.800". Refer to
msreport.peptidoform.make_localization_string for details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Allows specifying an alternative filename, otherwise the default filename is used. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
rewrite_modifications
|
bool
|
If True, the peptide format in "Modified sequence" is changed according to the MsReport convention, and a "Modifications" is added to contains the amino acid position for all modifications. Requires 'rename_columns' to be true. Default True. |
True
|
prefix_column_tags
|
bool
|
If True, column tags such as "Intensity" are added in front of the sample names, e.g. "Intensity sample_name". If False, column tags are added afterwards, e.g. "Sample_name Intensity"; default True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A DataFrame containing the processed ion table. |
Source code in msreport\reader.py
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 | |
import_psm_evidence
import_psm_evidence(
filename: Optional[str] = None,
rename_columns: bool = True,
rewrite_modifications: bool = True,
) -> DataFrame
Concatenate all "psm.tsv" files and return a processed dataframe.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Allows specifying an alternative filename, otherwise the default filename is used. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
rewrite_modifications
|
bool
|
If True, the peptide format in "Modified sequence" is changed according to the MsReport convention, and a "Modifications" is added to contains the amino acid position for all modifications. Requires 'rename_columns' to be true. Default True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A DataFrame containing the processed psm evidence tables. |
Source code in msreport\reader.py
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 | |
SpectronautReader
Bases: ResultReader
Spectronaut result reader.
Methods:
| Name | Description |
|---|---|
import_proteins |
Reads a LFQ protein report file and returns a processed dataframe, conforming to the MsReport naming convention. |
import_design |
Reads a ConditionSetup file and returns a processed dataframe, containing the default columns of an MsReport experimental design table. |
Attributes:
| Name | Type | Description |
|---|---|---|
default_filetags |
dict[str, str]
|
(class attribute) Look up of default file tags for the outputs generated by Spectronaut. |
sample_column_tags |
list[str]
|
(class attribute) Tags (column name substrings) that idenfity sample columns. Sample columns are those, for which one unique column is present per sample, for example intensity columns. |
column_mapping |
dict[str, str]
|
(class attribute) Used to rename original column names from Spectronaut according to the MsReport naming convention. |
column_tag_mapping |
OrderedDict[str, str]
|
(class attribute) Mapping of original sample column tags from Spectronaut to column tags according to the MsReport naming convention, used to replace column names containing the original column tag. |
protein_info_columns |
list[str]
|
(class attribute) List of columns that contain information specific to the leading protein. |
protein_info_tags |
list[str]
|
(class attribute) List of substrings present in columns that contain information specific to the leading protein. |
data_directory |
str
|
Location of the folder containing Spectronaut result files. |
filetags |
dict[str, str]
|
Look up of file tags used for matching files during the import of protein or other tables. |
contamination_tag |
str
|
Substring present in protein IDs to identify them as potential contaminants. |
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
directory
|
str
|
Location of the Spectronaut result folder. |
required |
contaminant_tag
|
str
|
Prefix of Protein ID entries to identify contaminants; default "contam_". |
'contam_'
|
Source code in msreport\reader.py
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 | |
import_design
Reads a ConditionSetup file and returns an experimental design table.
The following columns from the Spectronaut ConditionSetup file will be imported to the design table and renamed: Replicate -> Replicate Condition -> Experiment File Name -> Filename Run Label -> Run label
In addition, a "Sample" is added containing values from the Experiment and Replicate columns, separated by an underscore.
If neither filename nor filetag is specified, the default file tag "conditionsetup" is used to select a file from the data directory. If no file or multiple files match, an exception is thrown. The check for the presence of the file tag is not case sensitive.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Optional, allows specifying a specific file that will be imported. |
None
|
filetag
|
Optional[str]
|
Optional, can be used to select a file that contains the filetag as a substring, instead of specifying a filename. |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed design table. |
Source code in msreport\reader.py
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 | |
import_proteins
import_proteins(
filename: Optional[str] = None,
filetag: Optional[str] = None,
rename_columns: bool = True,
prefix_column_tags: bool = True,
drop_protein_info: bool = True,
) -> DataFrame
Reads a Spectronaut protein report file and returns a processed DataFrame.
Adds four protein entry columns to comply with the MsReport convention: "Protein reported by software", "Leading proteins", "Representative protein", "Potential contaminant".
"Protein reported by software" and "Representative protein" contain the first entry from the "PG.ProteinAccessions" column, and "Leading proteins" contains all entries from this column. Multiple leading protein entries are separated by ";".
Several columns in the Spectronaut report file can contain information specific for the leading protein entry. If leading proteins will be re-sorted later, it is recommended to remove columns containing protein specific information by setting 'drop_protein_info=True'.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Optional, allows specifying a specific file that will be imported. |
None
|
filetag
|
Optional[str]
|
Optional, can be used to select a file that contains the filetag as a substring, instead of specifying a filename. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
prefix_column_tags
|
bool
|
If True, column tags such as "Intensity" are added in front of the sample names, e.g. "Intensity sample_name". If False, column tags are added afterwards, e.g. "Sample_name Intensity"; default True. |
True
|
drop_protein_info
|
bool
|
If True, columns containing protein specific information, such as "Gene" or "Protein Length". See SpectronautReader.protein_info_columns and SpectronautReader.protein_info_tags for a full list of columns that will be removed. Default False. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed protein table. |
Source code in msreport\reader.py
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 | |
import_peptides
import_peptides(
filename: Optional[str] = None,
filetag: Optional[str] = None,
rename_columns: bool = True,
prefix_column_tags: bool = True,
) -> DataFrame
Reads a Spectronaut peptide report file and returns a processed DataFrame.
Uses and renames the following Spectronaut report columns: PG.ProteinAccessions, PEP.Quantity, PEP.StrippedSequence, and PEP.AllOccurringProteinAccessions
Adds four protein entry columns to comply with the MsReport convention: "Protein reported by software", "Leading proteins", "Representative protein", "Potential contaminant".
"Protein reported by software" and "Representative protein" contain the first entry from the "PG.ProteinAccessions" column, and "Leading proteins" contains all entries from this column. Multiple leading protein entries are separated by ";".
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Optional, allows specifying a specific file that will be imported. |
None
|
filetag
|
Optional[str]
|
Optional, can be used to select a file that contains the filetag as a substring, instead of specifying a filename. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
prefix_column_tags
|
bool
|
If True, column tags such as "Intensity" are added in front of the sample names, e.g. "Intensity sample_name". If False, column tags are added afterwards, e.g. "Sample_name Intensity"; default True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed protein table. |
Source code in msreport\reader.py
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 | |
import_ion_evidence
import_ion_evidence(
filename: Optional[str] = None,
filetag: Optional[str] = None,
rename_columns: bool = True,
rewrite_modifications: bool = True,
) -> DataFrame
Reads an ion evidence file (long format) and returns a processed dataframe.
Adds new columns to comply with the MsReport convention. "Protein reported by software" and "Representative protein", both contain the first entry from "PG.ProteinAccessions". "Ion ID" contains unique entries for each ion, which are generated by concatenating the "Modified sequence" and "Charge" columns, and if present, the "Compensation voltage" column.
"Modified sequence" entries contain modifications within square brackets. "Modification" entries are strings in the form of "position:modification_tag", multiple modifications are joined by ";". An example for a modified sequence and a modification entry: "PEPT[Phospho]IDO[Oxidation]", "4:Phospho;7:Oxidation".
"Modification localization string" contains localization probabilities in the
format "Mod1@Site1:Probability1,Site2:Probability2;Mod2@Site3:Probability3",
e.g. "15.9949@11:1.000;79.9663@3:0.200,4:0.800". Refer to
msreport.peptidoform.make_localization_string for details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
Optional[str]
|
Optional, allows specifying a specific file that will be imported. |
None
|
filetag
|
Optional[str]
|
Optional, can be used to select a file that contains the filetag as a substring, instead of specifying a filename. |
None
|
rename_columns
|
bool
|
If True, columns are renamed according to the MsReport convention; default True. |
True
|
rewrite_modifications
|
bool
|
If True, the peptide format in "Modified sequence" is changed according to the MsReport convention, and a "Modifications" is added to contains the amino acid position for all modifications. Requires 'rename_columns' to be true. Default True. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A dataframe containing the processed ion table. |
Source code in msreport\reader.py
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 | |
sort_leading_proteins
sort_leading_proteins(
table: DataFrame,
alphanumeric: bool = True,
penalize_contaminants: bool = True,
special_proteins: Optional[list[str]] = None,
database_order: Optional[list[str]] = None,
) -> DataFrame
Returns a copy of 'table' with sorted leading proteins.
"Leading proteins" are sorted according to the selected options. The first entry of the sorted leading proteins is selected as the new "Representative protein". If the columns are present, also the entries of "Leading proteins database origin" and "Leading potential contaminants" are reordered, and "Potential contaminant" is reassigned according to the representative protein.
Additional protein annotation columns, refering to a representative protein that has been changed, will no longer be valid. It is therefore recommended to remove all columns containing protein specific information by enabling 'drop_protein_info' during the import of protein tables or to update protein annotation columns if possible.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table
|
DataFrame
|
Dataframe in which "Leading proteins" will be sorted. |
required |
alphanumeric
|
bool
|
If True, protein entries are sorted alpha numerical. |
True
|
penalize_contaminants
|
bool
|
If True, protein contaminants are sorted to the back. |
True
|
special_proteins
|
Optional[list[str]]
|
Optional, allows specifying a list of protein IDs that will always be sorted to the beginning. |
None
|
database_order
|
Optional[list[str]]
|
Optional, allows specifying an order of protein databases that will be considered for sorting. Database names that are not present in 'database_order' are sorted to the end. The protein database of a fasta entry is written in the very beginning of the fasta header, e.g. "sp" from the fasta header ">sp|P60709|ACTB_HUMAN Actin". |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A copy of the 'table', containing sorted leading protein entries. |
Source code in msreport\reader.py
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 | |
add_protein_annotation
add_protein_annotation(
table: DataFrame,
protein_db: ProteinDatabase,
id_column: str = "Representative protein",
gene_name: bool = False,
protein_name: bool = False,
protein_entry: bool = False,
protein_length: bool = False,
molecular_weight: bool = False,
fasta_header: bool = False,
ibaq_peptides: bool = False,
database_origin: bool = False,
) -> DataFrame
Uses a FASTA protein database to add protein annotation columns.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table
|
DataFrame
|
Dataframe to which the protein annotations are added. |
required |
protein_db
|
ProteinDatabase
|
A protein database containing entries from one or multiple FASTA files. |
required |
id_column
|
str
|
Column in 'table' that contains protein uniprot IDs, which will be used to look up entries in the 'protein_db'. |
'Representative protein'
|
gene_name
|
bool
|
If True, adds a "Gene name" column. |
False
|
protein_name
|
bool
|
If True, adds "Protein name" column. |
False
|
protein_entry
|
bool
|
If True, adds "Protein entry name" column. |
False
|
protein_length
|
bool
|
If True, adds a "Protein length" column. |
False
|
molecular_weight
|
bool
|
If True, adds a "Molecular weight [kDa]" column. The molecular weight is calculated as the monoisotopic mass in kilo Dalton, rounded to two decimal places. Note that there is an opinionated behaviour for non-standard amino acids code. "O" is Pyrrolysine, "U" is Selenocysteine, "B" is treated as "N", "Z" is treated as "Q", and "X" is ignored. |
False
|
fasta_header
|
bool
|
If True, adds a "Fasta header" column. |
False
|
ibaq_peptides
|
bool
|
If True, adds a "iBAQ peptides" columns. The number of iBAQ peptides is calculated as the theoretical number of tryptic peptides with a length between 7 and 30. |
False
|
database_origin
|
bool
|
If True, adds a "Database origin" column. |
False
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
The updated 'table' dataframe. |
Source code in msreport\reader.py
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 | |
add_protein_site_annotation
add_protein_site_annotation(
table: DataFrame,
protein_db: ProteinDatabase,
protein_column: str = "Representative protein",
site_column: str = "Protein site",
) -> DataFrame
Uses a FASTA protein database to add protein site annotation columns.
Adds the columns "Modified residue", which corresponds to the amino acid at the protein site position, and "Sequence window", which contains sequence windows of eleven amino acids surrounding the protein site. Sequence windows are centered on the respective protein site; missing amino acids due to the position being close to the beginning or end of the protein sequence are substituted with "-".
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table
|
DataFrame
|
Dataframe to which the protein site annotations are added. |
required |
protein_db
|
ProteinDatabase
|
A protein database containing entries from one or multiple FASTA files. |
required |
protein_column
|
str
|
Column in 'table' that contains protein identifiers, which will be used to look up entries in the 'protein_db'. |
'Representative protein'
|
site_column
|
str
|
Column in 'table' that contains protein sites, which will be used to extract information from the protein sequence. Protein sites are one-indexed, meaining the first amino acid of the protein is position 1. |
'Protein site'
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
The updated 'table' dataframe. |
Source code in msreport\reader.py
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 | |
add_leading_proteins_annotation
add_leading_proteins_annotation(
table: DataFrame,
protein_db: ProteinDatabase,
id_column: str = "Leading proteins",
gene_name: bool = False,
protein_entry: bool = False,
protein_length: bool = False,
fasta_header: bool = False,
ibaq_peptides: bool = False,
database_origin: bool = False,
) -> DataFrame
Uses a FASTA protein database to add leading protein annotation columns.
Generates protein annotations for multi protein entries, where each entry can contain one or multiple protein ids, multiple protein ids are separated by ";".
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table
|
DataFrame
|
Dataframe to which the protein annotations are added. |
required |
protein_db
|
ProteinDatabase
|
A protein database containing entries from one or multiple FASTA files. |
required |
id_column
|
str
|
Column in 'table' that contains leading protein uniprot IDs, which will be used to look up entries in the 'protein_db'. |
'Leading proteins'
|
gene_name
|
bool
|
If True, adds a "Leading proteins gene name" column. |
False
|
protein_entry
|
bool
|
If True, adds "Leading proteins entry name" column. |
False
|
protein_length
|
bool
|
If True, adds a "Leading proteins length" column. |
False
|
fasta_header
|
bool
|
If True, adds a "Leading proteins fasta header" column. |
False
|
ibaq_peptides
|
bool
|
If True, adds a "Leading proteins iBAQ peptides" columns. The number of iBAQ peptides is calculated as the theoretical number of tryptic peptides with a length between 7 and 30. |
False
|
database_origin
|
bool
|
If True, adds a "Leading proteins database origin" column. |
False
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
The updated 'table' dataframe. |
Source code in msreport\reader.py
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 | |
add_protein_site_identifiers
add_protein_site_identifiers(
table: DataFrame,
protein_db: ProteinDatabase,
site_column: str,
protein_name_column: str,
)
Adds a "Protein site identifier" column to the 'table'.
The "Protein site identifier" is generated by concatenating the protein name with the amino acid and position of the protein site or sites, e.g. "P12345 - S123" or "P12345 - S123 / T125". The amino acid is extracted from the protein sequence at the position of the site. If the protein name is not available, the "Representative protein" entry is used instead.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table
|
DataFrame
|
Dataframe to which the protein site identifiers are added. |
required |
protein_db
|
ProteinDatabase
|
A protein database containing entries from one or multiple FASTA files. Protein identifiers in the 'table' column "Representative protein" are used to look up entries in the 'protein_db'. |
required |
site_column
|
str
|
Column in 'table' that contains protein site positions. Positions are one-indexed, meaning the first amino acid of the protein is position 1. Multiple sites in a single entry should be separated by ";". |
required |
protein_name_column
|
str
|
Column in 'table' that contains protein names, which will be used to generate the identifier. If no name is available, the accession is used instead. |
required |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the "Representative protein", 'protein_name_column' or 'site_column' is not found in the 'table'. |
Source code in msreport\reader.py
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 | |
add_sequence_coverage
add_sequence_coverage(
protein_table: DataFrame,
peptide_table: DataFrame,
id_column: str = "Protein reported by software",
) -> None
Calculates "Sequence coverage" and adds a new column to the 'protein_table'.
Sequence coverage is represented as a percentage, with values ranging from 0 to 100. Requires the columns "Start position" and "End position" in the 'peptide_table', and "Protein length" in the 'protein_table'. For protein entries where the sequence coverage cannot be calculated, a value of -1 is added.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
protein_table
|
DataFrame
|
Dataframe to which the "Sequence coverage" column is added. |
required |
peptide_table
|
DataFrame
|
Dataframe which contains peptide information required for calculation of the protein sequence coverage. |
required |
id_column
|
str
|
Column used to match entries between the 'protein_table' and the 'peptide_table', must be present in both tables. Default "Protein reported by software". |
'Protein reported by software'
|
Source code in msreport\reader.py
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 | |
add_ibaq_intensities
add_ibaq_intensities(
table: DataFrame,
normalize: bool = True,
ibaq_peptide_column: str = "iBAQ peptides",
intensity_tag: str = "Intensity",
ibaq_tag: str = "iBAQ intensity",
) -> None
Adds iBAQ intensity columns to the 'table'.
Requires a column containing the theoretical number of iBAQ peptides.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table
|
DataFrame
|
Dataframe to which the iBAQ intensity columns are added. |
required |
normalize
|
bool
|
Scales iBAQ intensities per sample so that the sum of all iBAQ intensities is equal to the sum of all Intensities. |
True
|
ibaq_peptide_column
|
str
|
Column in 'table' containing the number of iBAQ peptides. No iBAQ intensity is calculated for rows with negative values or zero in the ibaq_peptide_column. |
'iBAQ peptides'
|
intensity_tag
|
str
|
Substring used to identify intensity columns from the 'table' that are used to calculate iBAQ intensities. |
'Intensity'
|
ibaq_tag
|
str
|
Substring used for naming the new 'table' columns containing the calculated iBAQ intensities. The column names are generated by replacing the 'intensity_tag' with the 'ibaq_tag'. |
'iBAQ intensity'
|
Source code in msreport\reader.py
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 | |
add_peptide_positions
add_peptide_positions(
table: DataFrame,
protein_db: ProteinDatabase,
peptide_column: str = "Peptide sequence",
protein_column: str = "Representative protein",
) -> None
Adds peptide "Start position" and "End position" positions to the table.
For entries where the protein is absent from the FASTA or the peptide sequence could not be matched to the protein sequence, start and end positions of -1 are added.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table
|
DataFrame
|
Dataframe to which the protein annotations are added. |
required |
protein_db
|
ProteinDatabase
|
A protein database containing entries from one or multiple FASTA files. |
required |
peptide_column
|
str
|
Column in 'table' that contains the peptide sequence. Peptide sequences must only contain amino acids and no other symbols. |
'Peptide sequence'
|
protein_column
|
str
|
Column in 'table' that contains protein IDs that are used to find matching entries in the FASTA files. |
'Representative protein'
|
Source code in msreport\reader.py
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 | |
add_protein_modifications
add_protein_modifications(table: DataFrame)
Adds a "Protein sites" column.
To generate the "Protein modifications" the positions from the "Modifications" column are increase according to the peptide positions ("Start position"] column).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table
|
DataFrame
|
Dataframe to which the "Protein modifications" column is added. |
required |
Source code in msreport\reader.py
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 | |
propagate_representative_protein
propagate_representative_protein(
target_table: DataFrame, source_table: DataFrame
) -> None
Propagates "Representative protein" column from the source to the target table.
The column "Protein reported by software" is used to match entries between the two tables. Then entries from "Representative protein" are propagated from the 'source_table' to matching rows in the 'target_table'.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target_table
|
DataFrame
|
Dataframe to which "Representative protein" entries will be added. |
required |
source_table
|
DataFrame
|
Dataframe from which "Representative protein" entries are propagated. |
required |
Source code in msreport\reader.py
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 | |
extract_sample_names
Extracts sample names from columns containing the 'tag' substring.
Sample names are extracted from column names containing the 'tag' string, by splitting the column name with the 'tag', and removing all trailing and leading white spaces from the resulting strings.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
Column names from this dataframe are used for extracting sample names. |
required |
tag
|
str
|
Column names containing the 'tag' are selected for extracting sample names. |
required |
Returns:
| Type | Description |
|---|---|
list[str]
|
A list of sample names. |
Source code in msreport\reader.py
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 | |
extract_maxquant_localization_probabilities
Extract localization probabilites from a MaxQuant "Probabilities" entry.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
localization_entry
|
str
|
Entry from the "Probabilities" columns of a MaxQuant msms.txt, evidence.txt or Sites.txt table. |
required |
Returns:
| Type | Description |
|---|---|
dict[int, float]
|
A dictionary of {position: probability} mappings. Positions are one-indexed, |
dict[int, float]
|
which means that the first amino acid position is 1. |
Example:
extract_maxquant_localization_probabilities("IRT(0.989)AMNS(0.011)IER") {3: 0.989, 7: 0.011}
Source code in msreport\reader.py
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 | |
extract_fragpipe_localization_probabilities
Extract localization probabilites from a FragPipe "Localization" entry.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
localization_entry
|
str
|
Entry from the "Localization" column of a FragPipe ions.tsv or combined_ions.tsv table. |
required |
Returns:
| Type | Description |
|---|---|
dict
|
A dictionary of modifications containing a dictionary of {position: probability} |
dict
|
mappings. Positions are one-indexed, which means that the first amino acid |
dict
|
position is 1. |
Example:
extract_fragpipe_localization_probabilities( ... "M:15.9949@FIM(1.000)TPTLK;STY:79.9663@FIMT(0.334)PT(0.666)LK;" ... ) {'15.9949': {3: 1.0}, '79.9663': {4: 0.334, 6: 0.666}}
Source code in msreport\reader.py
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 | |
extract_spectronaut_localization_probabilities
Extract localization probabilites from a Spectronaut localization entry.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
localization_entry
|
str
|
Entry from the "EG.PTMLocalizationProbabilities" column of a spectronaut elution group (EG) output table. |
required |
Returns:
| Type | Description |
|---|---|
dict
|
A dictionary of modifications containing a dictionary of {position: probability} |
dict
|
mappings. Positions are one-indexed, which means that the first amino acid |
dict
|
position is 1. |
Example:
extract_spectronaut_localization_probabilities( ... "HM[Oxidation (M): 100%]S[Phospho (STY): 45.5%]GS[Phospho (STY): 54.5%]PG" ... ) {'Oxidation (M)': {2: 1.0}, 'Phospho (STY)': {3: 0.455, 5: 0.545}}
Source code in msreport\reader.py
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 | |